
What Makes Games Tick:

Demystifying AI for Games
WinHacks 2026

Steven Rice

https://winhacks.ca/
https://stevenrice.ca/files/What-Makes-Games-Tick.pdf

About Me

 PhD in Computer Science

 MSc in Computer Science – 2025

 Vector Scholarship in AI

 BSc in Computer Science – 2024

 BCom in Business Administration – 2023

 Minor in Mathematics

 Professional Student

https://vectorinstitute.ai/

About Me

 Game design always been my passion

 Never the time or attention span to release anything

 Yet

 Designed and taught first game development course at UDM

 Teaching AI for Games here

 COMP-4770

Showcase

Cast Sensor

Capture the Flag

https://www.udmercy.edu/
https://agents.kaijusolutions.ca/
https://agents.kaijusolutions.ca/
https://agents.kaijusolutions.ca/

About Me

AI and Games Conference 2025

https://www.aiandgamesconference.com/
https://www.aiandgamesconference.com/
https://www.aiandgamesconference.com/
https://www.aiandgamesconference.com/
https://www.aiandgamesconference.com/

Overview

 If you were to look up AI for

games, you’ll find plenty on

common ways they are designed

 Well, today you might find more

of AI just making games…

Overview

 Common AI development methods are easy to find

 Handle decision making

New Behavior Graph : r/Unity3D

Behaviour Trees: The Cornerstone of Modern Game AI | AI 101

The AI of Half-Life: Finite State Machines | AI 101

Building the AI of F.E.A.R. with Goal Oriented Action Planning | AI 101

How to Code Behaviour Trees in Unity C#

Stack-Based Finite State Machine (Push Down Automata)

Build a Better Finite State Machine in Unity

Better AI in Unity - GOAP (Goal Oriented Action Planning)

Utility AI: Mastering Smart Decisions in Unity!

Powerful Utility Intelligence AI framework (Introduction tutorial)

https://docs.unity3d.com/Packages/com.unity.behavior@latest
https://youtu.be/6VBCXvfNlCM
https://youtu.be/JyF0oyarz4U
https://youtu.be/PaOLBOuyswI
https://youtu.be/lusROFJ3_t8
https://youtu.be/lbuThXtRCOk
https://youtu.be/NnH6ZK5jt7o
https://youtu.be/T_sBYgP7_2k
https://youtu.be/S4oyqrsU2WU
https://youtu.be/IVy1ChdyC7Y
https://youtu.be/p3Jbp2cZg3Q

Overview

 Find a lot on movement

 But never explaining how

 Just using tools provided by the engine

https://youtu.be/NGGoOa4BpmY
https://youtu.be/SMWxCpLvrcc
https://youtu.be/aHFSDcEQuzQ
https://youtu.be/kEeJJeDPLw4
https://youtu.be/pXEXSOdjnOk
https://youtu.be/2W4JP48oZ8U

Movement in Games

 Often treated as a black box

 Majority of people who play or even make games likely will never know how

they move

 Nothing wrong with this

 These tools exist to make development easier

 What happens if some functionality is missing?

 How can you figure out why a character is moving a certain way?

 Let’s not be part of that majority

https://docs.unity3d.com/ScriptReference/AI.NavMeshAgent-destination.html

Movement in Games

1. Basic movements

 Move to a position

2. Compound movements

 Follow a path

3. Navigation

Step 0: Math

 Groundwork for our first basic movement

 What represents positions of objects in games?

 Vectors

 If we want to move from one position to another position, what are we doing?

 Current position vector → ??? → Target position vector

Vectors for positioning

 Slightly different representations over every game engine

 What axes means what

 What “hand” they are: Index finger in “forward” direction

 Unity: Y-up, Z-forward, left-handed engine

 Unreal: Z-up, X-forward, left-handed engine

 Focus on 2D movements for this class

 “Human-like” movement

 Looking at the world from the “top-down” view

 Unity: Z (forward) and X (right)

 Unreal: X (forward) and Y (right)

Coordinate System and Spaces in Unreal Engine | Unreal Engine 5.7 Documentation | Epic Developer Community

https://unity.com/
https://www.unrealengine.com/

Basic Movements

 Let’s say our agent is at the position (-1, -1), and wants to move to the target

at (3, 2)

 How can we perform this move?

-1, -1

3, 2

 Take the difference between the two positions and that is your movement!

 Known as the direction

 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 3, 2 − −1, −1 = 4, 3

 Apply the movement

 −1, −1 + 4, 3 = (3, 2)

Basic Movements

-1, -1

3, 2

3

4

Basic Movements

 In a game we want to get there smoothly over time

 Let’s say this movement is able to move at 2 units per second

 Let’s calculate this movement allowed for one second

 How can we only move a partial amount of this movement?

-1, -1

3, 2

3

4

Basic Movements

 We can normalize the vector!

 A normalized vector has a length of one

 To get to this, divide each component by the vector’s magnitude

 What is the magnitude?

 Make a triangle and get the hypotenuse!

 Then, take the square root

 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝑥2 + 𝑧2 = 42 + 32 = 16 + 9 = 25 = 5

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ÷ 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 4,3 ÷ 5 = 0.8, 0.6

3, 2

3

4

5

-1, -1

Basic Movements

 We can draw our normalized vector of (0.8, 0.6)

 Now, we know if we wanted to move exactly one unit towards the target, we

can move by 0.6 in one direction and 0.8 in the other!

 −1, −1 + 0.8, 0.6 = −0.2, −0.4

 But we want to move at 2 units per second?

3, 2

3

4

5

-1, -1

Basic Movements

 Multiply by the speed!

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 × 𝑠𝑝𝑒𝑒𝑑 = 0.8, 0.6 × 2 = 1.6, 1.2

 Hence, we move by (1.2, 1.6) and we are done!

 −1, −1 + 1.6, 1.2 = 0.6, 0.2

 This makes the movement for the entire second

 Games update at 60+ FPS

 How can we move over this time?

3, 2

3

4

5

-1, -1

Basic Movements

 60 FPS = Divide by 60 every frame!

 Problems with this?

 Framerate is variable!

 Is there a better solution?

 Multiply by the time elapsed since the last frame!

 All engines have an easy way to access this!

 Unity: Time.deltaTime

 Unreal: GetWorld()->GetDeltaSeconds()

3, 2

3

4

5

-1, -1

Basic Movements

 Recap everything up to this point

1. Subtract our position from the target

2. Get the normalized vector

3. Multiply by speed
3, 2

3

4

5

-1, -1

Basic Movements

 (target – position).normalized * speed

 Usually apply delta time smoothing at the end

 If multiple functions

 Now imagine we wanted to move a character controller towards a target

transform

 This would result in instant change in direction towards the target by the

desired amount which is great, but what if we wanted to add momentum to

our characters

 Gradual change over time

 Would need to “slow down” first if already moving in the other direction

 How could we add that?

Basic Movements

 Simply subtract our current velocity!

 (target – position).normalized * speed – velocity

 Like Time.deltaTime, this is often done at the end outside of the seek behaviour

itself depending on your implementation

 This is what is known as the “Seek” steering behaviour!

Steering Behaviours

 “Steer” towards where we want to go

 Not an instant movement (unless we have instant acceleration)

Target

Current

DesiredCurrent

Steering Behaviours

 “Steer” towards where we want to go

 Not an instant movement (unless we have instant acceleration)

Target

Current

DesiredCurrent

Steering

Desired – Current

Steering Behaviours

 “Steer” towards where we want to go

 Not an instant movement (unless we have instant acceleration)

Target

Current

DesiredCurrent

Actual

Steering Behaviours

 Seek is the most basic of all movements in games

 How can we do other behaviours?

 Let’s start simple: What would be the opposite of seeking to a target?

 Running away from the target!

Steering Behaviours

 Simply reverse the subtraction at the start of seek!

 Seek: (target – position).normalized * speed – velocity

 Flee: (position - target).normalized * speed – velocity

5

Steering Behaviours

-1, -1

3, 2

3

4

 Flee: (position - target).normalized * speed – velocity

 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑡𝑎𝑟𝑔𝑒𝑡 = −1, −1 − 3, 2 = −4, −3

 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = 𝑥2 + 𝑧2 = −42 + −32= 16 + 9 = 25 = 5

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ÷ 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = −4, −3 ÷ 5 = −0.8, −0.6

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ∗ 𝑠𝑝𝑒𝑒𝑑 = −0.8, −0.6 × 2 = (−1.6, −1.2)

 Subtract the existing velocity of the agent

Steering Behaviours

 We now have the two most basic movements needed for games

 What could be a limitation of these movements?

 Not “smart”!

 What if we are trying to track down a target but that target is moving?

 By the time we get to our “seeked” target, they have moved elsewhere!

 What should we do?

Target

Current

Steering Behaviours

 Intercept where the target is going!

 How can we know this?

Target

Current

Steering Behaviours

 Use the past observed velocity!

 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 = 2, 2

 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 4, 0

 𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 – 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = 2, 2 − (4, 0) = (−2, 2)

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 + 𝐶ℎ𝑎𝑛𝑔𝑒 = 2, 2 + −2, 2 = (0, 4)

 Now how do we move towards that predicted position?

 Simply use seek on the predicted future position!*

 *We need to account for our own speed first

Present

Current

Past

Steering Behaviours

 If we are fast enough, we could “catch up” super quick

 If not immediately reach them where they currently are, not needing to predict

Present

Current

Past

Steering Behaviours

 If we are slower, we need a longer intercept

 How can we calculate this?

 Multiply the predicted target by the distance over speed!

 𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ∗ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ 𝑠𝑝𝑒𝑒𝑑)

 Then, seek to this position!

 Is there a situation this might have problems?

Present

Current

Past

Steering Behaviours

 How would this work?

PresentCurrent Past

Steering Behaviours

 How would this work?

 If we are faster, then this works fine

 Faster speed = smaller lookahead distance

PresentCurrent Past

Steering Behaviours

 How would this work?

 If we are faster, then this works fine

 Faster speed = smaller lookahead distance

 If we are slower, the scaled distance ends up being larger

 Could end up behind us!

 We now are moving away from the target to “pursue” it!

 How can we fix this?

PresentCurrent Past

Steering Behaviours

 Two approaches

1. Calculate if moving towards each other, and simply seek instead

 Give a certain angle for the seek fallback behaviour

 Use dot products for quick math

2. Sum both speeds

 𝑓𝑢𝑡𝑢𝑟𝑒 = 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ∗ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ÷ (𝑠𝑝𝑒𝑒𝑑 + 𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑝𝑒𝑒𝑑))

 More mathematically expensive

 May now under predict when chasing, but often “feels” better

PresentCurrent Past

Steering Behaviours

 How can we make a predictive version of flee?

 Literally the exact same logic!

1. Do the same calculations as pursue

2. Pass that predicted future target into flee!

Steering Behaviours

 Pursue and evade have shown the first example of “compound” movements

 Being built upon the “atomic” movements of seek and flee

 Let’s continue to build up these more “advanced” movements

 Next up: following a path

 How can we do this?

Steering Behaviours

 Simply seek to one point at a time in your list of points to follow!

 When one is reached, remove it and seek to the next!

 How we get this list of points itself will be covered in the future

 Path following = Easy

 Path finding and planning = Hard*

 What is a potential issue with our current approaching algorithms?

 What if we overshoot a target?

Steering Behaviours

 Two main options:

1. The “Arrive” behaviour

 Slows down or completely stops based on a radius to the target

2. The “close enough” method

 If we are within a radius to a target position, count this as reaching it

 Even if you have an arrive behaviour, often a good idea to include this

Steering Behaviours

 Everything so far has assumed something:

 We have a specific target in mind!

 Either want to go to it or avoid it

 What if we don’t have a target?

 We likely don’t want to just sit still!

 Takes away from the life-likeness of the game

 Randomly choose to a point to seek to on the map

 Could be behind walls however – may need to path find and then follow

 This is however on the right track using seek!

 What could we do with seek that is simpler than a random space on the map?

Steering Behaviours

 Move in a random direction of our agent!

 How can we get a direction?

1. Project a unit circle around the agent

 Radius of 1 (technically radius is irrelevant here)

2. Seek to a random point on the circle

 What is an issue with this?

 This will be completely random!

 On average, the agent will stay in the same place!

 What can we do instead?

Agent

Unit circle

Random

target

Steering Behaviours

 Project the circle ahead of the agent!

 Will allow for some random drift but in a general direction

 Can now adjust the distance and radius of the circle

 Adjust to achieve your desired “wander” behaviour

Agent

Steering Behaviours

 What is a problem our agents could still face with this?

 Nothing wrong with the algorithm itself

 Something external to the wander algorithm

Agent

Steering Behaviours

 How does this (or any other movement) handle obstacles?

 How can we avoid obstacles?

Agent

Steering Behaviours

 Cast a ray ahead of us to detect the obstacles!

 We do this for a set distance ahead of us

Agent

Steering Behaviours

 Cast a ray ahead of us to detect the obstacles!

 We do this for a set distance ahead of us

 If there is no wall, we hit nothing and we do nothing

Agent

Steering Behaviours

 Cast a ray ahead of us to detect the obstacles!

 We do this for a set distance ahead of us

 If there is no wall, we hit nothing and we do nothing

 Otherwise, we need to change our course to avoid it

 How should this be done?
Agent

Steering Behaviours

 Take the normal of the hit

 Follow it until we reach a minimum desired distance

from the wall

Agent

Steering Behaviours

 Take the normal of the hit

 Follow it until we reach a minimum desired distance

from the wall

 Seek towards that spot instead

Agent

Steering Behaviours

 Obstacle avoidance is not without its limitations

 A single ray may not hit an obstacle!

 Multiple rays can account for this

 Side rays or “whiskers”

https://www.oreilly.com/library/view/ai-for-games/9781351053280

Steering Behaviours

 Multiple ray types

 No one best option for all situations

 What ray to get the normal of if multiple hit?

 Usually the shortest ray

https://www.oreilly.com/library/view/ai-for-games/9781351053280

Steering Behaviours

 The corner trap!

1. Left ray hit → Normal will steer us left

2. Right ray hits → Now the normal will steer us right!

3. Left ray hits again → Normal will steer use left!!

 We are trapped running into the corner!

 How can we avoid this?

https://www.oreilly.com/library/view/ai-for-games/9781351053280

Steering Behaviours

 No bullet-proof way

1. A wide fan or angle

2. Volume-based methods

3. Custom logic

 Potentially trap rapidly oscillating avoidances

 Then, perform a drastic trajectory change to escape

https://www.oreilly.com/library/view/ai-for-games/9781351053280

Steering Behaviours

 This was great for obstacles

 But how can we avoid other agents in a radius around us?

 Helps avoid walking into each other

 Spread out more?

Agent

Agent

Agent

Agent

Steering Behaviours

 This was great for obstacles

 But how can we avoid other agents in a radius around us?

 Helps avoid walking into each other

 Spread out more?

 Try to move in the opposite direction of each agent

 But by how much?
Agent

Agent

Agent

Agent

Agent

Steering Behaviours

Agent

Agent

Agent

Agent

Agent

 This was great for obstacles

 But how can we avoid other agents in a radius around us?

 Helps avoid walking into each other

 Spread out more?

 Try to move in the opposite direction of each agent

 But by how much?

 Inversely proportional to their distance!

 Linear = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) / 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 Inverse Square = 𝑚𝑖𝑛(𝑘 / (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒), 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

 This was great for obstacles

 But how can we avoid other agents in a radius around us?

 Helps avoid walking into each other

 Spread out more?

 Try to move in the opposite direction of each agent

 But by how much?

 Inversely proportional to their distance!

 Linear = 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) / 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 Inverse Square = 𝑚𝑖𝑛(𝑘 / (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒), 𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛)

 Seek towards the average of the positions

Steering Behaviours

Agent

Agent

Agent

Agent

Agent

 How efficient is this?

 All prior methods only care about the current agent

 O(1)

 Need to compare against all other agents in the world!

 O(n) even if no agents within the radius!

 Running on all agents = O(n2)

 What can we do to improve this?

Steering Behaviours

Agent

Agent

Agent

Agent

Agent

 Cache agents into chunks of the map

 Divide the world by a set size

 Whenever an agent moves, update its position

 We now know agents in close chunks are within

distance

 Manually check the distance of those in bordering cells

 Don’t check those beyond that

Steering Behaviours

 Most common method is to assign a weight to each

 Take the weighted average

 Some methods only run the top X highest weight or priority

 Potentially intelligently limit certain options

 Can have separation and collision avoidance together

 No point in having a seek, pursue, flee, or evade with each other

Multiple Steering Behaviours

Path Finding

 Obstacle avoidance can work okay for simple environments, but can’t

effectively get us around a complex environment

 Following a path is super easy

 Just repeated seek calls

 How can we find a path to follow?

 What do we need from our pathfinding algorithm?

A* Algorithm. Introduction to Pathfinding | by Teja | Medium GitHub - npretto/pathfinding: Visual explanation of pathfinding algorithms and how a*, Dijkstra and BFS can be seen as the same algorithm with different parameter/data structures used under the hood

A* Algorithm

https://medium.com/@saiteja310/a-algorithm-35580b1d29ce
https://github.com/npretto/pathfinding

Where do we even start?
CDN media

CDN media

https://www.reddit.com/r/cyberpunkred/comments/1ifdcke/map_of_night_city_2077_for_vtts_now_with_nxc_and
https://www.bragitoff.com/2015/11/gta-v-maps-quad-ultra-high-definition-8k-quality

Encoding our Worlds for Path Finding

 How can we utilize A* in our virtual worlds?

1. Your level is already a grid

2. Your level is not already a grid

 Place nodes in the world

Grid Levels

1. Encode in your grid structure

2. Choose a heuristic function

3. Run A* to the destination

4. Follow that path

5. Profit*

 *I am not actually

guaranteeing the financial

success of your game

https://youtu.be/-WCn9Nwo-LM

Non-Grid Levels

 How can we place nodes?

1. Manually

2. Automatically

Manual Node Placement

Pros

 Can manage total graph size

Cons

 Need to place literally every node

 And connect them!

 Every level, and every change

https://www.oreilly.com/library/view/ai-for-games/9781351053280

Automatic Node Placement

 How could we place in a simple

environment like this?

 Place and connect?

 Placing – Raycast from the sky

 Ground? Place node!

 Obstacle? Don’t place node

 Connecting – Line of sight

 See other node? Connect!

 Problems with this?

Automatic Node Placement

 Implementation won’t work for every

game

 Roofs or indoor areas

 Assume we can place the nodes

 So many nodes!

 Pathfinding will take a long time!

Where do we need nodes?

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Where do we need nodes?

#

#

S # # #

#

#

#

#

#

#

#

#

G

#

#

Where do we need nodes?

#

#

S # # #

#

#

#

#

#

#

#

#

G

#

#

Needed – Around Obstacles!

#

#

S # # #

#

#

#

#

#

#

#

#

G

#

#

Identify Convex Corners

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Corner Graph in Practice

 Using this method, to find a path we:

1. Find the node nearest to our agent

2. Find the node nearest to our target

3. Find a path between the nodes

 Once the path is found, we:

1. Move (seek) to the nearest starting node

2. Follow the found path

3. Move (seek) to the target

Agent sends request

Agent

Destination

Nearest points determined

Path found

What can we improve?

String pulling!

Corner Graphs

 Nice in theory but how do we place these?

1. Using the ray casting method – Do checks for the open spaces and keep corners

 This was part of an old assignment for this class

2. Extract mesh information from the world

 Why are these corners all we need?

 What is so special about them?

How can we break up the level?

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Potentially like this

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Or maybe this

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Or this

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Corner Graphs

 Which layout is correct?

 All of them!

 Why?

Corner Graphs

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Single Part

Single Part

S

G

 If I ask you to move from the start position to the

goal, how can you do that?

Single Part

S

G

 If I ask you to move from the start position to the

goal, how can you do that?

 Just seek!

 If I ask you to move anywhere in this part, how can

you do that?

 Always just seek!

 Why does this work?

 Rectangle → Convex shape

 Any convex shape works

S

G

Corner Graphs

#

#

#

#

#

#

#

#

#

#

#

#

#

#

Two Parts

S

G

 Now, how can we move to the goal?

Two Parts

S

G

 Now, how can we move to the goal?

 A seek would move us out-of-bounds

Two Parts

S

G

 Seek to the corner, then seek to the goal!

 What is the significance of the corner?

Two Parts

S

G

 Seek to the corner, then seek to the goal!

 What is the significance of the corner?

 Concave angle → Will impede direct seeks

Takeaways

 Concave corners impede direct movement → Require navigation

 What are we navigating between?

 The convex polygons!

Polygon Navigation

S

G

 Let’s stop thinking of these as grids

 Potentially composed of many nodes

Polygon Navigation

S

G

 View them as convex polygons or meshes!

 Simplifies the navigation space

 Reduce potential cost of running A* as each polygon

is the node, rather than a vast grid

Navigation Meshes

 The most used method for navigation in modern games

 Reads physics (or visual) geometry and breaks it into convex meshes

 Navigation calculated between meshes, simple seek movements within each mesh

 Agents have a radius?

 “Step” the corners in, intuitively similar to corner-graphs

 Walls or obstacles?

 Rule them out based on angle or explicitly defined obstacles

Our positions

https://www.gamedev.net/tutorials/programming/artificial-intelligence/navigation-meshes-and-pathfinding-r4880

Our starting and destination cells

https://www.gamedev.net/tutorials/programming/artificial-intelligence/navigation-meshes-and-pathfinding-r4880

The used connections

https://www.gamedev.net/tutorials/programming/artificial-intelligence/navigation-meshes-and-pathfinding-r4880

https://www.gamedev.net/tutorials/programming/artificial-intelligence/navigation-meshes-and-pathfinding-r4880

Navigation Meshes

 Should navigation meshes always be used today?

 Game dependent!

 Sometimes, there is a clear way to place nodes simpler than using meshes

Navigation Meshes

 How might navigation meshes handle this level?
Dungeon Crawler

https://nonika.ca/#projects

Navigation Meshes

 How might navigation meshes handle this level?
Dungeon Crawler

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Navigation Meshes

 We could just add nodes at each entrance
Dungeon Crawler

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Dungeon Crawler

Navigation Meshes

 Attach nodes within the rooms to each other

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Dungeon Crawler

Navigation Meshes

 Attach adjoining doors together

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Dungeon Crawler

Navigation Meshes

 Now we have sufficient pathfinding with a simpler graph for A*

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Navigation Meshes

 The same navigation with navigation meshes
Dungeon Crawler

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Navigation Meshes

 First find the path between meshes
Dungeon Crawler

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Dungeon Crawler

Navigation Meshes

 Then “string pull” along the corners

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Dungeon Crawler

Navigation Meshes

 Which path is better?

https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects
https://nonika.ca/#projects

Navigation Meshes

 Either is likely “good enough”

 Navigation meshes

 “Better” in terms of a shorter path

 No need to implement your own pathfinding logic

 Custom node placement

 “Better” as more “human-like”?

 Not hugging the walls → A common “issue” with navigation meshes!

1. Create a wider agent radius to avoid corners

2. Place invisible “obstacles” along the walls to force the agent to walk in the center

This may contain: a ferret wearing a flower hat and saying please don't ever speak to me about math i've moved on

https://www.reddit.com/r/opossum_irl/comments/1doz84m/math_irl

Takeaways

 Whether you want to make games or just enjoy them, hope you’ve learned

something about what goes on inside of them

 University of Windsor

 COMP-3770 and COMP-4770

 Kaiju Agents: agents.kaijusolutions.ca

Unity Behavior Integration

Vision Sensor

Cast Sensor

Microbes

https://agents.kaijusolutions.ca/
https://behavior.kaijusolutions.ca/
https://agents.kaijusolutions.ca/
https://agents.kaijusolutions.ca/
https://agents.kaijusolutions.ca/
https://agents.kaijusolutions.ca/

Thank You for Listening!

StevenRice.ca

Contact@StevenRice.ca

StevenRice99

StevenRice99

A qr code on a white background

Description automatically generated

A blue circle with white letters on it

Description automatically generated

A blue envelope with white lines

Description automatically generated

A blue square with white letters

Description automatically generated

https://stevenrice.ca/
https://stevenrice.ca/
mailto:contact@stevenrice.ca
https://www.linkedin.com/in/stevenrice99
https://github.com/StevenRice99
https://stevenrice.ca/
mailto:contact@stevenrice.ca
https://www.linkedin.com/in/stevenrice99
https://github.com/StevenRice99

	Slide 1: What Makes Games Tick: Demystifying AI for Games
	Slide 2: About Me
	Slide 3: About Me
	Slide 4: About Me
	Slide 5: Overview
	Slide 6: Overview
	Slide 7: Overview
	Slide 8: Movement in Games
	Slide 9: Movement in Games
	Slide 10: Step 0: Math 🤮
	Slide 11: Vectors for positioning
	Slide 12: Basic Movements
	Slide 13: Basic Movements
	Slide 14: Basic Movements
	Slide 15: Basic Movements
	Slide 16: Basic Movements
	Slide 17: Basic Movements
	Slide 18: Basic Movements
	Slide 19: Basic Movements
	Slide 20: Basic Movements
	Slide 21: Basic Movements
	Slide 22: Steering Behaviours
	Slide 23: Steering Behaviours
	Slide 24: Steering Behaviours
	Slide 25: Steering Behaviours
	Slide 26: Steering Behaviours
	Slide 27: Steering Behaviours
	Slide 28: Steering Behaviours
	Slide 29: Steering Behaviours
	Slide 30: Steering Behaviours
	Slide 31: Steering Behaviours
	Slide 32: Steering Behaviours
	Slide 33: Steering Behaviours
	Slide 34: Steering Behaviours
	Slide 35: Steering Behaviours
	Slide 36: Steering Behaviours
	Slide 37: Steering Behaviours
	Slide 38: Steering Behaviours
	Slide 39: Steering Behaviours
	Slide 40: Steering Behaviours
	Slide 41: Steering Behaviours
	Slide 42: Steering Behaviours
	Slide 43: Steering Behaviours
	Slide 44: Steering Behaviours
	Slide 45: Steering Behaviours
	Slide 46: Steering Behaviours
	Slide 47: Steering Behaviours
	Slide 48: Steering Behaviours
	Slide 49: Steering Behaviours
	Slide 50: Steering Behaviours
	Slide 51: Steering Behaviours
	Slide 52: Steering Behaviours
	Slide 53: Steering Behaviours
	Slide 54: Steering Behaviours
	Slide 55: Steering Behaviours
	Slide 56: Steering Behaviours
	Slide 57: Steering Behaviours
	Slide 58: Steering Behaviours
	Slide 59: Steering Behaviours
	Slide 60: Steering Behaviours
	Slide 61: Multiple Steering Behaviours
	Slide 62: Path Finding
	Slide 63: A* Algorithm
	Slide 64: Where do we even start?
	Slide 65: Encoding our Worlds for Path Finding
	Slide 66: Grid Levels
	Slide 67: Non-Grid Levels
	Slide 68: Manual Node Placement
	Slide 69: Automatic Node Placement
	Slide 70: Automatic Node Placement
	Slide 71: Where do we need nodes?
	Slide 72: Where do we need nodes?
	Slide 73: Where do we need nodes?
	Slide 74: Needed – Around Obstacles!
	Slide 75: Identify Convex Corners
	Slide 76: Corner Graph in Practice
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: Corner Graphs
	Slide 82: How can we break up the level?
	Slide 83: Potentially like this
	Slide 84: Or maybe this
	Slide 85: Or this
	Slide 86: Corner Graphs
	Slide 87: Corner Graphs
	Slide 88: Single Part
	Slide 89: Single Part
	Slide 90: Single Part
	Slide 91: Corner Graphs
	Slide 92: Two Parts
	Slide 93: Two Parts
	Slide 94: Two Parts
	Slide 95: Two Parts
	Slide 96: Takeaways
	Slide 97: Polygon Navigation
	Slide 98: Polygon Navigation
	Slide 99: Navigation Meshes
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104: Navigation Meshes
	Slide 105: Navigation Meshes
	Slide 106: Navigation Meshes
	Slide 107: Navigation Meshes
	Slide 108: Navigation Meshes
	Slide 109: Navigation Meshes
	Slide 110: Navigation Meshes
	Slide 111: Navigation Meshes
	Slide 112: Navigation Meshes
	Slide 113: Navigation Meshes
	Slide 114: Navigation Meshes
	Slide 115: Navigation Meshes
	Slide 116: Takeaways
	Slide 117: Thank You for Listening!

