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About Me

• Master’s student at the University of Windsor
• Vector Scholarship in Artificial Intelligence Recipient

• Bachelor of Computer Science

• Bachelor of Commerce

• Minor in Mathematics

• Taught game development at the University of Detroit Mercy

• Spent some time working in industry
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About Me

• Enjoy learning about and applying latest AI tech
• A lot of research focused on robotics

• Game development and game AI
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Large Language Models

• The latest major AI advancement

• Massive model size compared to other AI methods
• ResNet-152 – 60.3 million parameters [1]

• Llama 3.2 – Smallest is 1 billion parameters [2]

• Llama 3.1 – Largest is 405 billion parameters [2]

• Long training times and hardware requirements

• Have “emergent abilities” [3]
• “Abilities that are not present in small models but arise in large models” [3]
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Emergent Abilities

• In-context learning or “zero-shot prompting” [3]
• Answer questions without traditional training

• Can often perform better with “few-shot prompting”
• Provide a few examples

• Chain-of-thought reasoning
• Reasoning with intermediary steps to finalize an answer [4]

• Can help solve more complex problems

• Why do these emerge?
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Emergent Abilities

• Large model size and attention mechanisms

• Long prompts and even entire conversations can be fed into models
• “Chatting” is really sending a large message of the conversation history

• Will be limited by how long the context length is
• How many tokens can be fed in and remembered by the LLM

• Very large in top-of-the line models – Llama models up to 128,000 tokens [2]
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Tokenizing

• How tokens are determined

• Used in other areas such as search engines

• It would be too much to process the input character by character
• An algorithm will break up the input into chunks or tokens

• 1 word ≈ 1 token

• Various strategies can be used in tokenization depending on domain
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Tokenizing

• Input
• The quick brown fox jumps over the lazy dog

• Normalization
• the quick brown fox jumps over the lazy dog

• Stemming
• The quick brown fox jump over the lazy dog

• Stop words removal
• quick brown fox jumps over lazy dog

• Stemming and stop words removal are usually avoided with LLMs
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Strengths of LLMs

• Summarizing

• Code generation

• Creative writing
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Summarizing

• No external information or knowledge needed beyond the input
• All information essentially the LLM needs is provided by the input

• Output size < Input size
• “Removing” information/tokens rather than expanding
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Code Generation

• Many LLMs trained on sources like StackOverflow

• Code is very well-structured text
• “Easier” to understand than regular text
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Creative Writing

• LLMs trained on immense data sources

• Can easily pull from these when given the freedom
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Weaknesses of LLMs

• Facts

• Real-time information

• Domain-specific knowledge

• Math
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Facts

• Will often “hallucinate”
• They may have been trained on facts related to a topic, but they are not 

exactly remembered

• Responses which sound right may be generated that are not true upon further 
investigation

• Will literally make up fake references
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Real-time Information

• Only know what they have been trained on or prompted with
• If prompted with new information, this will only be a limited amount of new 

knowledge

• Some “chat” providers will try to search the web to provide the LLM 
with more information
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Domain-specific Knowledge

• LLMs only know what they have been trained on

• Certain domains are less common
• Advanced topics within certain domains even more so

• Can limit the effectiveness of certain strengths such as coding
• Certain coding languages less common

• Asking a question in a common language but a niche package or API
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Math

• Starting to improve, but still a weak point

• OpenAI’s o1 models showed great improvements [5, 6]

• Why do LLMs struggle with math?

• What can we do to improve this?
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Math – Numerical Formatting

• Converting numerical values to words was found to help [7]
• 1234 → one thousand two hundred and thirty four

• 2% to 3% improvement in some cases [7]

• How numbers are tokenized
• Should 1234 be treated as one token, or multiple?

• How is it split if so?

• If the tokenization does not split every digit, some information may be lost

• Formatting as words ensures better tokenization
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Math – Show Your Work

• Prompting with examples to show steps in solving problems yielded 
better success [8]

• Responses showed steps as well [8]

• This is a basic example of a “chain-of-thought”
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Math – Show Your Work
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Math – Chain-of-thought

• Methods to make the LLM “think” and “reflect” on its answer

• May involve a “conversation”
• LLM essentially responding to itself

• A user or other agent communicating with the LLM to guide it

• The o1 models use an advanced chain-of-thought method [5, 6]

Saturday, November 16, 2024 Steven Rice — Pushing Beyond the Limitations of LLMs 26



Math – Multiple Attempts

• Prompt a model multiple times or different models with the same 
question

• The answer which occurs the most is chosen as the final answer

• “Self consistency” [9]

• Can take significantly longer
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Math – Leverage Strengths

• Avoid doing math with the LLM!

• Instead of focusing on solving the specific math problem, generate 
code that calculates the final answer [10, 11]
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Forecasting

• What is required?
• Understanding numerical data

• May need up-to-date information

• Potentially domain-specific knowledge

• LLMs struggle with all of these!
• Research as shown LLMs are not good for forecasting [12]
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Forecasting

• Luckily, we don’t have to use LLMs!

• Deep-learning methods can fit time-series data to predict the future

• Mathematical models can fit consistent data

• Where could we not use these methods?
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Forecasting
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Sample predictive analysis [13]



Forecasting

• What if we don’t have existing data?
• How could we fit a deep learning method or create a mathematical model?

• Are there situations like this?

• What if the data does not appear cyclical?
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Forecasting
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COVID-19 Forecasting

• No models could accurately forecast COVID-19 when the pandemic 
started

• Attempts to extend existing models of other diseases could not adapt 
for unique characteristics of COVID-19 [14]

• Deep learning could not be performed
• Later after the start of the pandemic deep learning methods found some 

success [15, 16]

• What options do we have to work with?
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COVID-19 Forecasting

• Simple mathematical models
• Able to fit trends with only small amounts of data

• ARIMA – Autoregressive integrated moving average
• Struggles with sudden changes [17]

• Can LLMs help us here despite being considered poor for forecasting?
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COVID-19 Forecasting with LLMs

• What we need to do:
• Make a quantitative prediction

• Understand factors which could contribute to future COVID-19 infections

• What we can do:
• Leverage the strengths of LLMs!

• Quantitative prediction – no the best

• Understand factors – potentially, if provided
• How can we get information?
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COVID-19 Forecasting with LLMs

• Let’s not rely on an LLM entirely!

• Quantitative prediction
• Use a traditional forecasting model as a baseline like ARIMA and Simple 

Exponential Smoothing (SES)

• Need information
• Scrape the web and use the LLM to summarize
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COVID-19 Forecasting with LLMs
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COVID-19 Summarizing Agent Prompt

You are trying to help forecast 𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇𝐼𝑁𝐺 in 𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁 . Below is 
an article. If the article is not relevant for forecasting 𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇𝐼𝑁𝐺 in 
𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁, respond with "FALSE". If the article is relevant for 
forecasting 𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇𝐼𝑁𝐺 in 𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁, respond with a brief 
summary highlighting values most important for forecasting 
𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇𝐼𝑁𝐺 in 𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁. Only state facts and keep sentences 
short:

𝐴𝑅𝑇𝐼𝐶𝐿𝐸
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COVID-19 Adjustment Agent Prompt

You are tasked with forecasting 𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇𝐼𝑁𝐺 you predict will occur 
over the next 𝐹𝑈𝑇𝑈𝑅𝐸 𝑃𝐸𝑅𝐼𝑂𝐷𝑆. You must respond with a single 
integer and nothing else. Here are the number of 𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇𝐼𝑁𝐺 in 
𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁 from the previous 𝑃𝐴𝑆𝑇−𝑃𝐸𝑅𝐼𝑂𝐷𝑆 from oldest to newest: 
𝐻𝐼𝑆𝑇𝑂𝑅𝑌𝑛, 𝐻𝐼𝑆𝑇𝑂𝑅𝑌𝑛−1, ..., 𝐻𝐼𝑆𝑇𝑂𝑅𝑌2, 𝐻𝐼𝑆𝑇𝑂𝑅𝑌1. An ARIMA 
forecasting model has predicted that over the next 𝐹𝑈𝑇𝑈𝑅𝐸 
𝑃𝐸𝑅𝐼𝑂𝐷𝑆, there will be 𝑋 𝐹𝑂𝑅𝐸𝐶𝐴𝑆𝑇𝐼𝑁𝐺 in 𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁. ARIMA is 
known to underpredict and react too slow for a surge. Using your best 
judgement, keep or adjust this value. Below are 𝑀 news articles from 
the past 𝑃𝐸𝑅𝐼𝑂𝐷 to help guide you in making your decision.
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COVID-19 Adjustment Agent Prompt

Article I of 𝑀
Title : 𝑇𝐼𝑇𝐿𝐸I
Publisher: 𝑃𝑈𝐵𝐿𝐼𝑆𝐻𝐸𝑅I
Posted : 𝐴𝐺𝐸I days ago
𝑆𝑈𝑀𝑀𝐴𝑅𝑌I
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COVID-19 Forecasting with LLMs

• Applied this model on COVID-19 hospitalizations in Ontario
• 207 weeks of data from the start of COVID-19

• Had to forecast a set number of weeks in advance

• The proposed model was compared to an ARIMA-only model

Saturday, November 16, 2024 Steven Rice — Pushing Beyond the Limitations of LLMs 43



COVID-19 Forecasting with LLMs
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Forecast ARIMA ARIMA + LLMs Improvement
1 51.69% 70.53% 18.84%
2 52.43% 67.48% 15.05%
3 50.73% 63.41% 12.68%
4 49.02% 57.84% 8.82%
5 49.26% 55.17% 5.91%
6 48.02% 53.96% 5.94%
7 48.76% 53.73% 4.98%
8 46.00% 51.00% 5.00%
9 45.23% 49.25% 4.02%

10 45.45% 47.47% 2.02%
11 47.21% 51.27% 4.06%
12 46.43% 52.04% 5.61%

Success Rate Improvement



COVID-19 Forecasting with LLMs
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Average Difference

Forecast ARIMA ARIMA + LLMs
1 -2.33 68.32
2 -5.88 79.77
3 -11.48 122.86
4 -18.49 145.43
5 -29.09 142.48
6 -41.23 192.81
7 -53.81 238.92
8 -65.99 182.47
9 -77.48 219.94

10 -92.34 68.69
11 -106.8 106.82
12 -118.15 210.28



COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs
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COVID-19 Forecasting with LLMs

• Showed overall improvements over traditional forecasting methods 
alone
• First work to shown successful results with quantitative forecasting

• Achieved by leveraging strengths and minimizing where LLMs need to 
directly work with their weaknesses

• Tends to over predict
• Preferable to under predicting in a field such as this

• What are some issues that still need to be overcome?
• What milestones need to be achieved before a method like this could be 

safely used in the real-world?
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Problems to Overcome for Safe Real-world Use

• How accurate is the model?

• How confident is the model?

• How fault-proof is the model?

• Is this training biased in any way?
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How accurate is the model?

• Currently over forecasting

• Preferable to under forecasting in this domain, but is it by too much?
• Human-in-the loop to analyze forecasts?

• How accurate do we need to be in this domain?

• For the same inputs, how varied is the output?
• Run with different LLMs?

• Run multiple trials?

• How to determine what is the best?
• Average? Min? Max?
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How confident is the model?

• Is the current model confident in its answers but they are wrong?

• Is it not confident?

• How can we determine this, and what could be done to overcome it?

• Potentially have the model reflect
• List information it felt was useful and what was not

• Look for trends in what varies the results of the LLM

• Provide more or better data sources
• Integrated to official databases
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How fault-proof is the model?

• What if the context length is exceeded?
• Forgets its task and responds with irrelevant information

• How can we be sure the information being summarized is accurate?
• Only take from certain sources?

• Would this result in too little information?

• May need a human-in-the-loop
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Is this training biased in any way?

• Do LLMs have a strong knowledge base of COVID-19?
• Would this mean it is only recalling past information?

• Would it perform worse on a new disease?

• No dates are fed into the current model

• Future works could mask the term “COVID-19” with a generic 
“disease” term and compare results
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Problems to Overcome for Safe Real-world Use

• More trials and more rigorous tests must be done

• There is a need for better forecasting metrics for these situations
• This research can serve as a starting point, but is not ready for safe 

deployment into the real-world
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Robotics

• Robotics are integral to all manufacturing 
processes
• Typically have six axes or degrees-of-freedom

• How do robots move?
• Inverse kinematics

• “If I want to reach a target, where do I need 
to put my joints?”

• How good are inverse kinematics solving 
methods?
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Inverse Kinematics

• All methods have limitations

• Poor portability or scaling [18]

• Inconsistent accuracy, repeatability, or speeds [19, 20, 21]

• Efficient per-robot solutions often proprietary to the manufacturer
• Works well for the real robot

• Makes it hard to simulate for digital twins

• What does it take to solve inverse kinematics for efficient solutions?
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Inverse Kinematics

• Strong math

• Ability to comprehend the kinematic structure in 3D-space

• Strong engineering skills
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Solving Inverse Kinematics with LLMs

• Don’t solve directly for a particular target position
• Generate code that can solve for any target position

• Parse and prompt with only necessary information
• Joint positions and offsets from each other
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Solving Inverse Kinematics with LLMs

1. Provide information on the kinematic chain in an initial prompt

2. Execute resulting solution on multiple test points
1. If all tests are passed, finish

2. Otherwise, provide feedback to the LLM to improve

• Method tested with multiple LLMs against an iterative solver from 
DeepMind
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Solving Inverse Kinematics with LLMs
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Initial Prompting



Solving Inverse Kinematics with LLMs
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Feedback Prompting



Solving Inverse Kinematics with LLMs
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1 Degree-of-Freedom Results

Method Success Rate (%) Position Error (m) Average Time (ms) Feedbacks

o1-mini 100.00% 0.000 m 0.001 ms 0

o1-preview 100.00% 0.000 m 0.001 ms 1

GPT-4 100.00% 0.000 m 0.004 ms 1

DeepMind IK 98.80% 0.010 m 3.882 ms -

GPT-4o 0.10% 0.502 m 0.003 ms 3



Solving Inverse Kinematics with LLMs
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2 Degrees-of-Freedom Results

Method Success Rate (%) Position Error (m) Average Time (ms) Feedbacks

o1-mini 100.00% 0.000 m 0.004 ms 1

o1-preview 100.00% 0.000 m 0.006 ms 1

DeepMind IK 93.70% 0.046 m 4.037 ms -

GPT-4 0% 0.010 m 0.003 ms 3



Solving Inverse Kinematics with LLMs
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3 Degrees-of-Freedom Results

Method Success Rate (%) Position Error (m) Average Time (ms) Feedbacks

o1-mini 100.00% 0.000 m 0.015 ms 2

DeepMind IK 73.40% 0.263 m 4.161 ms -

o1-preview 0.10% 0.704 m 0.014 ms 3



Solving Inverse Kinematics with LLMs
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4 Degrees-of-Freedom Results

Method Success Rate (%) Position Error (m) Average Time (ms) Feedbacks

DeepMind IK 83.80% 0.267 m 3.804 ms -

o1-mini 0.00% 1.409 m 0.010 ms 3



Solving Inverse Kinematics with LLMs

• This is the first application of LLMs towards inverse kinematics

• Successful methods were extremely efficient
• Outperforming the DeepMind solver

• Not close to real-world use
• Only solved three degrees-of-freedom whereas most real-world serial 

manipulator robots have six

• The chain-of-though capabilities of the o1 models proved effective

• How can we try to improve this?
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Solving Inverse Kinematics with LLMs

• Iteratively solve
• For a three degrees-of-freedom robot, first solve only the first joint

• Use that result as a base for solving the second, and then that result to solve 
the final third joint

• Try to expand the chain-of-though process
• Provide interactive options with the environment
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Solving Inverse Kinematics with LLMs
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Solving Inverse Kinematics with LLMs

• Will this be enough to get to real-world use?
• Likely not, but we need to start somewhere

• Real robots have limits and physical limitations that are not yet being tested
• Multiple solutions – which is the best?

• How do we verify solutions are correct?
• Currently testing a set of random test points

• Is this enough? How many are enough?

• Can we conclusively say 100% of reachable points can be solved through these test cases?

• How could we analytically prove the solutions are correct?
• Would this require expert knowledge of kinematics to verify it?
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Working with LLMs locally

• Plenty of options that can run LLMs on your own computers
• Ollama

• vLLM

• llama.cpp

• Most have official plugins for popular programming languages
• Python

• JavaScript

• Around 8 GB of RAM to run 7B models
• Extending context lengths will require more
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Working with LLMs locally

• Ollama very friendly to get started with
1. Install Ollama

2. Add the package

3. Call your LLM
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Working with LLMs locally

• Create a chat system like ChatGPT
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Get Involved with Research

• Take advantage of the experts around you!
• Guide and verify your ideas and give you new ones

• Most professors open to hearing your cool ideas and will support you
• Never too early or too late to start

• University of Windsor CS undergraduates – take COMP-4960
• One-on-one research for credit

• Can publish a paper out of it

• Looks great for CVs both if you decide to look for a job or continue in school
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Get Involved with Research

• Scholarships favor publications
• Can get more than enough to completely cover a masters degree if you 

continue your education

• Scholarship opportunities exclusively for AI

• Vector Scholarship in Artificial Intelligence – $17,500

• Ontario Graduate Scholarship – $15,000

• NSERC Graduate Scholarships – $27,000
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Thank you for listening!

StevenRice.ca

 Contact@StevenRice.ca

 StevenRice99

 StevenRice99
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